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An AC Microgrid Architecture and Control Strategy
to Achieve Stability with Any Type of Load

D. Semënov, G. Mirzaeva, C.D. Townsend, G.C. Goodwin
School of Electrical Engineering and Computer Science, The University of Newcastle, Australia

Abstract—This papers presents a theoretical stability study
of a newly proposed AC microgrid architecture and its control
strategy without droop and communication. The paper proves
that the proposed AC microgrid is inherently stable in the
presence of any type of load. The paper also proposes a control
embellishment, which makes any type of load appear to microgrid
as a simple constant current load. Theoretical findings of the
paper are validated by extensive simulation results.

Index Terms – AC microgrid, CPL, CCL, CIL, microgrid
control, microgrid stability.

I. INTRODUCTION

Today’s utility grid is undergoing a transformation from
centralized generation model with passive electricity distribu-
tion towards smart decentralized networks. AC microgrid is
an emerging concept for interconnected distributed generators
(DG), battery storage systems (BSS) and local loads.

Advancements in the semiconductors technology, with the
consequent drop in prices, turned variable frequency drives,
switching power supplies and other power converters into a
popular and even typical load type for distribution networks.
Such loads will be also present on the load side of an
AC microgrids, adding the associated stability issues to the
microgrid control problems.

Published research has shown that a realistic microgrid load
can be represented as a combination of constant impedance and
constant power loads [1]. A constant impedance load (CIL) can
be seen as a load, which voltage and current relate to each other
via a given and constant impedance. Such loads, for example,
heaters and incandescent lamps, typically do not pose a big
challenge to power system stability.

Other loads, such as variable frequency drives and various
power converters, act as constant power loads (CPL), which
change their impedance depending on the input voltage to keep
the consumed power constant. That means that an increase in
voltage across the converter’s terminals will result in a decrease
in electric current, and vice versa [2]. This effect, known as a
negative incremental impedance, can be a source of instability
and may lead to a collapse of the bus voltage [3], [4].

Due to low system inertia, islanded AC and DC microgrids
can be easily destabilized and are, therefore, particularly
vulnerable to the negative impedance loads [5]. Stability of
islanded AC microgrids in the presence of CPL has been
investigated by many researchers.

Small-signal behavior of the load depending on the rectifier
type is studied in [6], which also determines conditions for
small signal stability. Analysis using eigenvalues and Hankel

singular values, for different load combinations, is reported in
[7]. Admittance-based analysis and Nyquist stability criterion
are used in [8], which also proposes three active damping
methods. In [9], a nonlinear dynamic model of converter-based
CPLs is developed and Popov’s stability criterion is applied.

AC microgrids with droop control and virtual impedance
has been analyzed in [10] using bifurcation method. In [11]
it is proposed to add a virtual resistance into the system, to
always keep system poles on the left hand side of the s-plane.
A positive effect of a higher line resistance and lower line
inductance on a droop controlled AC microgrid is studied in
[12]. The use of an external three phase stabilizing inverter is
proposed in [13].

The authors of this paper have recently proposed a simple
but very effective alternative to a traditional AC microgrid
architecture [14]. Instead of using AC frequency and voltage
as a microgrid communication method, as in traditional droop
control, an implicit communication between the microgrid
inverters is achieved by measuring the downstream currents.

The details of this alternative architecture and its control
can be found in the companion paper [14]. In this paper it
will be shown that the proposed AC microgrid architecture
has a significant advantage in terms of system stability. It will
be proven theoretically and illustrated by simulations that the
proposed AC microgrid is inherently stable in the presence of
any type of the load, including constant current load (CCL),
constant impedance load (CIL) and constant power load (CPL).

II. PROPOSED AC MICROGRID ARCHITECTURE

The alternative topology of AC microgrid proposed in the
companion paper [14] is shown in Fig.1a. All distributed
generation (DG) inverters operate under closed loop current
control, using downstream current measurement (immediately
on the right from each DG inverter) as their current references.
The left-most, battery storage system (BSS) inverter operates
under a tight closed loop voltage control, keeping the capacitor
voltage to a set-point value.

As was shown in [14], regardless of the inverter sizes, it is
possible to so design the control gains Kj of the individual
inverters that the dynamic of each inverter will be described
by the following expression:

iSj = DjiL
1

1 + sτ
(1)

where iL is the load current; Dj is the share of the inverter j
in the load current; and τ = L1/R1 is the time constant of the
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Fig. 1: The proposed AC microgrid architecture and its equivalent circuit.

inverter #1 (the right-most inverter), which is replicated by all
other DG inverters by choosing the appropriate gains.

Then the combined current from all DG inverters will be
then given by:

iDG =

N∑
j=1

iSj =

N∑
j=1

DjiL
1

1 + sτ
= iL

1

1 + sτ
(2)

Therefore, the combination of N differently rated DG in-
verters behaves like a single first-order system.

It should be noted that DG inverters, being essentially
current-controlled voltage source inverters, cannot respond
instantly to a change in the load demand. Therefore, the BSS
inverter should act instantly to provide the transient difference
between the load current and current supplied by DGs. This
is achieved by setting up the BSS inverter as a voltage
controlled current source inverter. Then the BSS current iB
is complementing iDG to the total load current iL:

iB = iL
sτ

1 + sτ
(3)

Further, adding line impedances Zj between the inverters,
where:

Zj = Rj + sLj (4)

makes only a small change in the system equivalent circuit. In
fact, as shown in [14], the entire microgrid system, including
a number of DG inverters and BSS inverters with series
impedances of the connecting lines, can be simplified to an
equivalent circuit containing only two inverters: one DG and
one BSS, as shown in Fig.1b.

The equivalent inverter “DG” in Fig.1b represents all current
controlled inverters in the microgrid acting together, while the
equivalent inverter “Battery” represents all voltage controlled
inverters acting together.

The total line impedance connecting all DG inverters to the
load is ZDG, where:

ZDG = Z1 + Z2 + . . .+ ZN (5)

To account for the fact that different parts of the total DG
current flows through different line impedances to reach the
load, a coefficient α < 1 is introduced so that:

Z1 + Z2 (D2 + . . .+DN ) + . . .+ ZNDN = αZDG (6)

Then the BSS voltage can be expressed as:

VB = VL + αZDGiDG + (ZDG + ZB) iB (7)

which is one of the principal equations of proposed in [14] con-
trol model for AC microgrid. BSS is chosen as a grid forming
power converter, which sets the voltage on the microgrid bus.

III. STABILITY STUDY WITH DIFFERENT LOAD TYPES

It will be assumed in the following stability study that volt-
age control of the BSS inverters has a much higher bandwidth
than current control of DG inverters. In the simulation study
presented later in this paper, the bandwidth of the BSS voltage
control was selected by two orders of magnitude higher than
the bandwidth of the DG current control.

With such a significant difference in bandwidths, the BSS
inverter and the DG inverter controls become essentially
decoupled. In other words, from the prospective of the DG
control, the capacitor voltage VC can be assumed practically
constant, i.e. VC = VPCC . Then the dynamics of the equivalent
DG inverter is described by the following differential equation:

τ
diDG
dt

+ iDG = iL (8)

which is the time-domain form of the equation (2).
If the the load current iL is known, and the DG current iDG

is determined from (8), then the BSS current can be found as
the difference between these two currents, namely:

iB = iL − iDG (9)

Since the capacitor voltage VC = VPCC , then the load
voltage can be found as VC minus the voltage drops on the
series impedances as:

VL = VPCC − (ZB + ZDG)iB − αZDGiDG (10)

Using (9), the load voltage can be further expressed as:

VL = VPCC − (ZB + ZDG)iL + ((1− α)ZDG + ZB) iDG
(11)

It is also clear that in steady state iDG = iL; iB = 0; and
VL = VPCC − αZDGiL.

In the sequel, we will study the dynamics of iL, iDG, iB
and VL for different types of the load. We will start with
the CCL model as the simplest case. Then we will explore a
more realistic CIL case and, finally, the most challenging CPL



case. For simplicity, we assume that line and load impedances
are purely resistive. Extension to a typical RL impedance is
straightforward. This would increase the order of the dynamic
equations by one, making the analytical solutions bulky, but
would not have a significant effect on stability and other
important findings of the paper.

Additionally, all the currents and voltages will be illustrated
by their one-dimensional components only. This means that
all current and voltage space vectors are observed from a syn-
chronously rotating reference frame, and their dq-components
are assumed decoupled by a standard decoupling circuit.

A. Constant Current load

If the constant current model is assumed then iL does not
depend on VL. This means that iL is driving the other currents.
If iL undergoes a change, then simply iDG can be found from
(8); iB - from (9) or (10); and VL - from (11).

There is no feedback effect of the change in VL back on the
load current iL.

For example, if the load current undergoes a step change
from ioL to isL then, according to equation (8), the DG current
is expected to have an exponential response. The solution of
the first order linear non-homogeneous equation (8) consists
of two parts:

iDG(t) = igDG(t) + ipDG (t) (12)

where igDG is the general solution of the corresponding homo-
geneous equation; and ipDG a particular solution of the non-
homogeneous equation (8). From examining equation (8), it is
clear that:

iDG(t) = C1e
− t
τ + C0 (13)

where constants C1, C0 can be determined from the known
initial and final values of the load current as:

iDG(0) = C1 + C0 = ioL
iDG(∞) = C0 = isL

(14)

Thus, the solution for the DG current will be given by:

iDG(t) = (ioL − isL) e−
t
τ + isL

= ioL + (isL − ioL)
(

1− e− t
τ

) (15)

The BSS current is determined from (9) as:

iB(t) = (isL − ioL) e−
t
τ (16)

By substituting (15) and (16) into the voltage equation (10),
the load voltage can be found as:

VL(t) = VPCC − (ZB + ZDG) (isL − ioL) e−
t
τ

−αZDGioLe−
t
τ − αZDGisL

(
1− e− t

τ

) (17)

The above calculated currents and voltage are shown Figs.2
by black (CCL) plots. It is clear from Fig.2d that, due to the
load current change, the load voltage initially drops but then
asymptotically reached the new steady value. The load voltage
indeed depends on the load current. This is the price to pay
for keeping the PCC voltage at a constant value. However, no
instability of the load voltage or PCC voltage is observed.

(a) Load currents (b) DG currents

(c) BSS currents (d) Load voltages

Fig. 2: Theoretical transient currents and voltages for different
load types.

B. Constant Impedance load

Electric heaters, certain types of lamps and other resistor-
like loads will be seen by microgrid as CIL. The same funda-
mental equations (8)-(11) apply, however, the load current iL
is no longer an independent variable. The objective now is to
express iL in terms of iDG and load impedance ZL, so that
the main dynamic equation (8) can be solved.

From the voltage equation (11) and knowing the load
impedance ZL, the load current can be expressed as:

iL =
VPCC − (ZB + ZDG)iL + ((1− α)ZDG + ZB) iDG

ZL
(18)

which can be solved with respect to iL as:

iL =
VPCC + ((1− α)ZDG + ZB) iDG

ZDG + ZB + ZL
(19)

Substituting expression (19) into the main dynamic equation
(8), and separating terms containing iDG, leads to:

τ
diDG
dt

+iDG

(
1− (1− α)ZDG + ZB

ZDG + ZB + ZL

)
=

VPCC
ZDG + ZB + ZL

(20)
which can be simplified into the following form:

τ
ZL + ZDG + ZB
ZL + αZDG

diDG
dt

+ iDG =
VPCC

ZL + αZDG
(21)

By introducing a new time constant:

τ ′ = τ
ZL + ZDG + ZB
ZL + αZDG

(22)

equation (21) can be written as:

τ ′
diDG
dt

+ iDG =
VPCC

ZL + αZDG
(23)



Clearly, the obtained dynamic equation for the DG current
in CIL case, is still a linear first order non-homogeneous
differential equation. However, its time constant and right-hand
side contain a load-dependent impedance ZL. It can be easily
shown that, under steady state condition,

iL = iDG =
VPCC

ZL + αZDG
; VL = VPCC − αZDGiL (24)

Consequently, the change in load current (and the proportional
change in the load voltage) can only happen due to a change
in load impedance.

Say that load impedance undergoes a step change from ZoL
to ZsL. Then, using the same principles as in the CCL case,
the solution of the dynamic equation (23) will have the form:

iDG(t) = C1e
− t
τ′ + C0 (25)

where coefficients C0 and C1 can be found from the initial
and final DG current values:

iDG(0) = C1 + C0 = VPCC
ZoL+αZDG

iDG(∞) = C0 = VPCC
ZsL+αZDG

(26)

Finally, the solution of the main dynamic equation for DG
current will be given by:

iDG(t) = VPCC
ZsL+αZDG

+
(

VPCC
ZoL+αZDG

− VPCC
ZsL+αZDG

)
e−

t
τ′

(27)
The corresponding load current, BSS current and load

voltage can be found by using expressions (19), (9) and (10),
respectively. For the sake of space, the analytical expressions
for iL, iB and VL are not provided here but are used to develop
the corresponding plots shown in Figs.2 by red (CIL) lines.

For the comparison purpose, the drop in the load impedance
is so chosen that it results in the same steady state conditions
as in the CCL case.

It is clear from Fig.2d that, if the CIL impedance drops, the
CIL load current undergoes an instant step change followed by
a further exponential increase. The dynamic of the DG current
is slightly slower than for the CCL case due to the difference
between τ and τ ′ evident from (22). The transient BSS current
does not reach as a high level and the transient load voltage
drop does not reach as a low level, as for the CCL case.

The system remains stable, since the pole of the first order
system described by (23) s = −1/τ ′ always remains in the
left hand side of the complex plane. To summarize, the system
behaviour in the case of CIL is very similar to that in the case
of CCL, albeit slightly smoother.

C. Constant Power load

When analyzing the microgrid behaviour with CPL, we use
a similar approach to the CIL case. Namely, we will express iL
in terms of iDG and load power PL, so that the main dynamic
equation (8) can be solved. Using iLVL = PL and the load
voltage expression (11) leads to:

iL [VPCC − (ZB + ZDG)iL + ZeqiDG] = PL (28)

where Zeq is defined as:

Zeq = (1− α)ZDG + ZB (29)

The following quadratic equation for iL results from (28):

(ZB + ZDG) i2L − (VPCC + ZeqiDG) iL + PL = 0 (30)

The realistic solution of equation (30) is given by:

iL =
VPCC + ZeqiDG
2 (ZDG + ZB)

−

√
(VPCC + ZeqiDG)

2 − 4 (ZDG + ZB)PL

2 (ZDG + ZB)

(31)

We note that ZeqiDG is a very small value compated to the
rest of the terms under the square root. This allows us to use
a Taylor series expansion and its linear approximation of the
type: √

(a+ bx)
2 − c ≈

√
a2 − c+

ab√
a2 − c

x (32)

Then the load current iL can be approximately (with an
error of the order of 1%) expressed as:

iL ≈
VPCC (1− f(PL))

2 (ZDG + ZB)
− Zeq

2 (ZDG + ZB)

(
1

f(PL)
− 1

)
iDG

(33)
where

f (PL) =

√
1− 4PL

V 2
PCC

(ZDG + ZB) (34)

Then, as per usual, substituting the expression (33) into the
main dynamic equation (8), results in:

τ
diDG
dt

+ iDG =
VPCC (1− f (PL))

2 (ZDG + ZB)

− Zeq
2 (ZDG + ZB)

(
1

f (PL)
− 1

)
iDG

(35)

Grouping the terms which contain iDG and introducing a
modified time constant given by:

τ” = τ
2 (ZDG + ZB) f (PL)

2 (ZDG + ZB) f (PL) + Zeq (1− f (PL))
(36)

and a brief notation:

F (PL) =
VPCCf (PL) (1− f (PL))

2 (ZDG + ZB) f (PL) + Zeq (1− f (PL))
(37)

results in the following compact form of the main dynamic
equation for the CPL case:

τ”
diDG
dt

+ iDG = F (PL) (38)

It is clear from (38) that F (PL) has the meaning of a steady
state DG current.

The load voltage and current can only change as a result of
the change in load power. Therefore, it is interesting to see the
iDG dynamic following a step change in PL.

If the load power changes from P oL to P sL then the cor-
responding steady state DG currents change from F (P oL) to



F (P sL), which are determined from expression (37). Finally,
the solution of the dynamic equation (38) for the CPL case
will be given by:

iDG(t) = F (P sL) + [F (P oL)− F (P sL)] e−
t
τ” (39)

The resulting analytical solutions for iL, iB , iDG and VL
are illustrated by the corresponding plots shown in Figs.2 by
green (CPL) lines. For comparison purpose, similar steady
state currents are used for all three cases (CCL, CIL and CPL).

It is clear from Fig.2d that, if the CPL power drops, the
CPL load current exhibits a small overshoot followed by an
exponential decrease.

The dynamic of the DG current is slightly faster than for the
CCL case due to that, according to (22), τ” is always slightly
shorter than τ . The transient BSS current reaches a slightly
higher level and the transient load voltage drops to a slightly
lower level than those for the CCL case.

The system remains stable, since the pole of the first order
system described by (38) s = −1/τ” always remains in the
left hand side of the complex plane. To summarize, the system
behaviour in the case of CPL is very similar to that in the case
of CCL, albeit slightly harsher.

D. Concept of dynamic reference

It has been shown so far that, with the proposed microgrid
architecture, different types of loads (CCL, CIL and CPL)
result in a stable and very similar system dynamics. By using
a very simple adjustment, it is further possible to achieve
identical system dynamics in all three cases. This can be done
by measuring the current iB supplied by the BSS inverter, and
adjusting its voltage reference from VPCC to VPCC +ZeqiB .

Then it can be easily shown that, regardless of the type of
the load, the load voltage equation reduces down to:

VL = VPCC − αZDGiL (40)

This condition removes dependence of iL on iDG. The load
current can be now independently determined from (40) based
on the type of the load. If impedance (in case of CIL) or power
(in case of CPL) undergoes a step change, then the load current
undergoes an immediate step change, without any exponential
rise or decay. The step change of the load current then drives
the DG current, according to the main dynamic equation (8).

If the initial and final load currents are ioL and isL, respec-
tively, then, regardless of the type of the load, the DG current
dynamic will be described by:

iDG(t) = isL + [ioL − isL] e−
t
τ (41)

This makes CCL, CIL or CPL appear identical to the
microgrid and, for simplicity, can be all treated as CCL.

IV. SIMULATION RESULTS

A simulation of an AC microgrid developed in accor-
dance with the above principles has been implemented in
Matlab/Simulinkr. Performance of the AC microgrid has been
studied in islanded mode. No droop and no communication
between system components have been used.

Parameter VPCC LDG LBSS CBSS ZB ZDG

Value 240 V 0.1 H 0.01 H 0.001 F 1 Ω 2 Ω

Table I: AC microgrid parameters used in simulation

Parameters of the equivalent microgrid reduced to two
inverters (DG and BSS) are given in Table I. It should be noted
that the voltage controlled BSS inverters was implemented as
a VSI with a fast inner current loop and a slower outer voltage
loop. To decouple DG and BSS inverter control loops, the DG
control loop was much slower than the outer BSS control loop.

Figs. 3 show simulated transient responses of DG, BSS
and load currents, represented by their d-components, under
different load types. As can be seen from Figs.3, the transient
currents are mostly supplied by the BSS inverter, while the
steady state currents are supplied solely by the DG inverter.

Fig. 3a illustrates the microgrid behavior with a CCL load.
At t = 0 the load current steps from 0 to 5A, and at t = 15 ms
the load current steps from 5A to 10A. The observed dynamics
Of DG and BSS currents corresponds to the theoretical results
given by (15) and (16).

Under the simulated CIL scenario, illustrated by Fig. 3b,
the load impedance changed from ∞ to 46.75Ω and then
to 22.75Ω, which corresponds to the steady state currents 0,
5A and 10A, respectively. Under the simulated CPL scenario,
illustrated by Fig. 3c, the load power changes from 0 to
1168.75W and then to 2275W, corresponding to the same
steady state currents. In agreement with the theoretical results
of Figs.2, the load current exhibits a small undershoot under
CIL and a small overshoot under CPL.

The dynamics of the load voltages under the three scenarios
are compared in Fig. 3d. In all three cases the load voltage
remains stable, with slight difference in dynamics, as expected
from the theoretical results.

Finally, Fig.4 illustrates application of the dynamic reference
approach to the CPL case. When comparing Fig.4 to Fig.3c it
is evident that, when applying the reference adjustment to the
BSS inverter, the load current no longer exhibits an overshoot,
and the system dynamics become identical to the CCL case.

It can be concluded that the simulation results have shown
a very good agreement with the presented theoretical findings.

V. CONCLUSION

This paper has presented a theoretical stability study of
the proposed non-droop AC microgrid architecture and its
control strategy. It has theoretically proven that the proposed
AC microgrid is inherently stable under any type of loads,
including CCL, CIL and CPL.

Furthermore, the paper proposed an embellishment of the
BSS inverter control, which makes any type of the load appear
to the AC microgrid as a simple constant current load.

The presented theoretical results have been validated by
detailed simulations of AC microgrid operation under the
scenarios studied in the paper. The paper has confirmed the
advantages of the proposed AC microgrid architecture and its
control concepts, from the stability prospective.



(a) Currents under CCL

(b) Currents under CIL

(c) Currents under CPL

(d) Load voltage waveforms under 3 load types

Fig. 3: Simulated transient currents and voltages for different
load types.
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